Finding the Largest Eigenvalue of a Nonnegative Tensor

نویسندگان

  • Michael K. Ng
  • Liqun Qi
  • Guanglu Zhou
چکیده

In this paper we propose an iterative method for calculating the largest eigenvalue of an irreducible nonnegative tensor. This method is an extension of a method of Collatz (1942) for calculating the spectral radius of an irreducible nonnegative matrix. Numerical results show that our proposed method is promising. We also apply the method to studying higher-order Markov chains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the largest eigenvalue of a symmetric nonnegative tensor

In this paper, some important spectral characterizations of symmetric nonnegative tensors are analyzed. In particular, it is shown that a symmetric nonnegative tensor has the following properties: (i) its spectral radius is zero if and only if it is a zero tensor; (ii) it is weakly irreducible (respectively, irreducible) if and only if it has a unique positive (respectively, nonnegative) eigenv...

متن کامل

Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor

An iterative method for finding the largest eigenvalue of a nonnegative tensor was proposed by Ng, Qi, and Zhou in 2009. In this paper, we establish an explicit linear convergence rate of the Ng–Qi–Zhou method for essentially positive tensors. Numerical results are given to demonstrate linear convergence of the Ng–Qi–Zhou algorithm for essentially positive tensors. Copyright © 2011 John Wiley &...

متن کامل

A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map

In this paper we propose a quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomialmapwhere theNewtonmethod is used to solve an equivalent system of nonlinear equations. The semi-symmetric tensor is introduced to reveal the relation between homogeneous polynomial map and its associated semi-symmetric tensor. Based on this relation a globally ...

متن کامل

Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor

Consider the problem of computing the largest eigenvalue for nonnegative tensors. In this paper, we establish the Q-linear convergence of a power type algorithm for this problem under a weak irreducibility condition. Moreover, we present a convergent algorithm for calculating the largest eigenvalue for any nonnegative tensors.

متن کامل

Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming

Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentiall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009